โ–ธโ–ธ
  • ๐Ÿ‡ฌ๐Ÿ‡ง Barium
  • ๐Ÿ‡บ๐Ÿ‡ฆ ะ‘ะฐั€ั–ะน
  • ๐Ÿ‡จ๐Ÿ‡ณ ้‹‡
  • ๐Ÿ‡ณ๐Ÿ‡ฑ Barium
  • ๐Ÿ‡ซ๐Ÿ‡ท Baryum
  • ๐Ÿ‡ฉ๐Ÿ‡ช Barium
  • ๐Ÿ‡ฎ๐Ÿ‡ฑ ื‘ืจื™ื•ื
  • ๐Ÿ‡ฎ๐Ÿ‡น Bario
  • ๐Ÿ‡ฏ๐Ÿ‡ต ใƒใƒชใ‚ฆใƒ 
  • ๐Ÿ‡ต๐Ÿ‡น Bário
  • ๐Ÿ‡ช๐Ÿ‡ธ Bario
  • ๐Ÿ‡ธ๐Ÿ‡ช Barium
  • ๐Ÿ‡ท๐Ÿ‡บ ะ‘ะฐั€ะธะน
  • Discoveror: Sir Humphrey Davy
  • Place of discovery: England
  • Date of discovery: 1808
  • Origin of name : from the Greek word "barys" meaning "heavy".

Baryta (barium oxide, BaO) was distinguished from lime (calcium oxide, CaO) by Scheele in 1774. Elemental barium was isolated by Sir Humphrey Davy in 1808 who electrolysed molten baryta.

Sometime prior to the autumn of 1803, the Englishman John Dalton was able to explain the results of some of his studies by assuming that matter is composed of atoms and that all samples of any given compound consist of the same combination of these atoms. Dalton also noted that in series of compounds, the ratios of the masses of the second element that combine with a given weight of the first element can be reduced to small whole numbers (the law of multiple proportions). This was further evidence for atoms. Dalton's theory of atoms was published by Thomas Thomson in the 3rd edition of his System of Chemistry in 1807 and in a paper about strontium oxalates published in the Philosophical Transactions. Dalton published these ideas himself in the following year in the New System of Chemical Philosophy. The symbol used by Dalton for barium is shown below. [See History of Chemistry, Sir Edward Thorpe, volume 1, Watts & Co, London, 1914.]

Dalton's symbol for barium