You are at: University of Sheffield » Chemistry » Mark Winter » Orbitron (atomic orbitals and molecular orbitals)

# Atomic orbitals: d2sp3 hybrid wave function

There are six d2sp3 hybrid obitals defined mathematically as linear combinations of component atomic orbitals, in this case 3s, 3p, and 3d functions. The √(1/6) factor is a normalization constant.

Table of equations for the d2sp3 orbitals.
Function Equation
Wave function,
ψd2sp31
= √(1/6) × (ψ3s + √(3)ψ3pz + √(2)ψ3dz2)
Wave function,
ψd2sp32
= √(1/6) × (ψ3s + √(3)ψ3pz - √(1/2)ψ3dz2 + √(3/2)ψ3dx2 - y2)
Wave function,
ψd2sp33
= √(1/6) × (ψ3s + √(3)ψ3pz - √(1/2)ψ3dz2 - √(3/2)ψ3dx2 - y2)
Wave function,
ψd2sp34
= √(1/6) × (ψ3s - √(3)ψ3pz - √(1/2)ψ3dz2 + √(3/2)ψ3dx2 - y2)
Wave function,
ψd2sp35
= √(1/6) × (ψ3s - √(3)ψ3pz - √(1/2)ψ3dz2 - √(3/2)ψ3dx2 - y2)
Wave function,
ψd2sp36
= √(1/6) × (ψ3s - √(3)ψ3pz + √(2)ψ3dz2)
Electron density = ψd2sp312, ψd2sp322, ψd2sp332, ψd2sp342, ψd2sp352, and ψd2sp362

 Web winter.group.shef.ac.uk www.shef.ac.uk
Copyright Feedback The images Acknowledgments Problems? References
 The Orbitron is a gallery of orbitals on the WWW The OrbitronTM, a gallery of orbitals on the WWW, URL: http://winter.group.shef.ac.uk/orbitron/ Copyright 2002-2015 Prof Mark Winter [The University of Sheffield]. All rights reserved. Document served: Tuesday 17th July, 2018